US68 Lawrence Creek Bridge

Embankment Settlement & Proposed Solutions

ACEC-KY/FHWA/KYTC Partnering Conference Louisville, Kentucky September 4, 2019

Project Team

GEOTECHNOLOGY

Outline

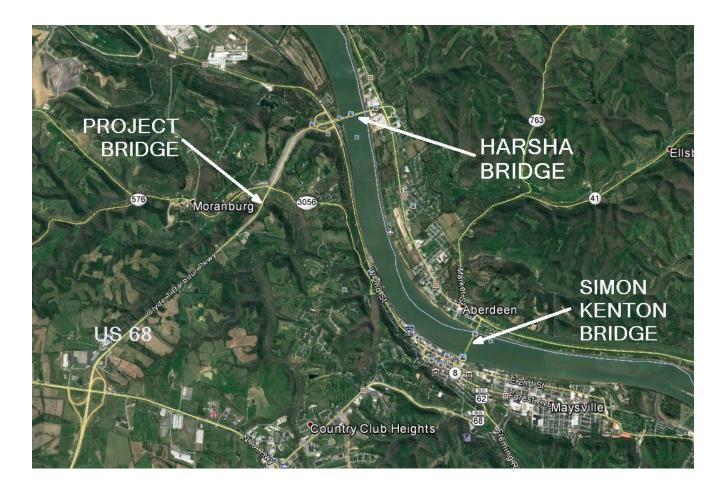
Project Background

- Geotechnical Investigation
- Bridge Evaluation
- Proposed Solutions

John P. Loyd Memorial Bridge

Project Data

- 766-ft Length
- ADT is 4,800
- Urban Principal Arterial
- Design 1994
- Constructed 1996-1997

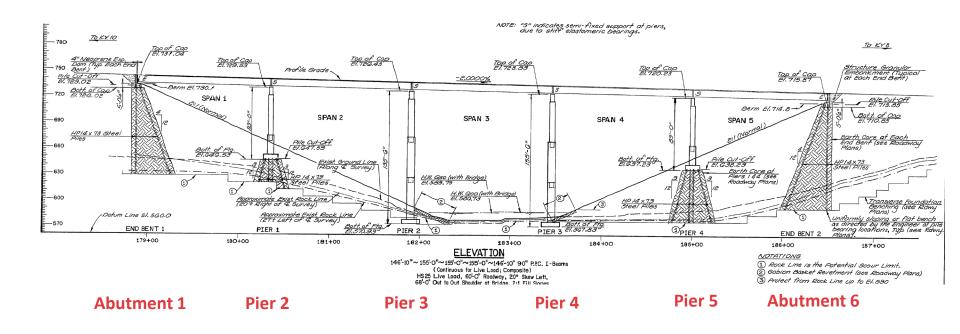


Site Location

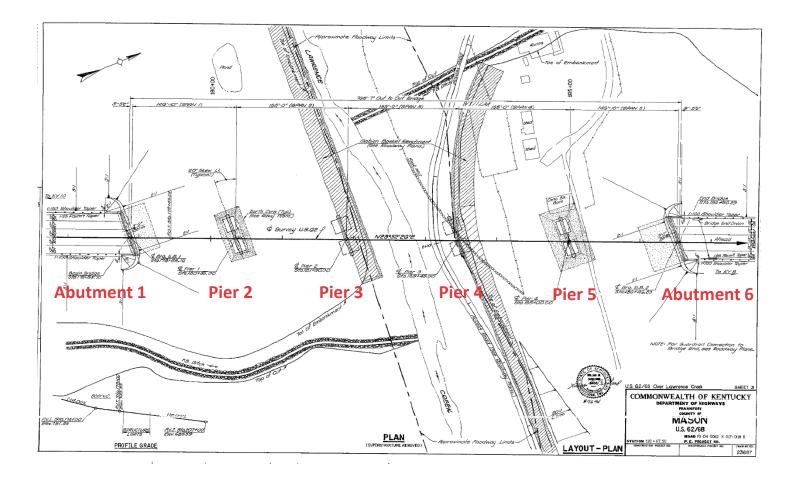
Site Location

Ohio River Crossings in Maysville

Site Location



Adjacent Crossings



Bridge Elevation

Bridge Plan

GEOTECHNOLOGY

Bridge Problems – Issues from Day 1

Bridge Problems – July 2014

Bridge Problems – July 2014

Bridge Problems – July 2014

Bridge Problems – 2016

Bridge Problems – 2016

Bridge Problems – 2016

US 68 Lawrence Creek Bridge

19

Bridge Problems – 2016

Bridge Problems – 2016

US 68 Lawrence Creek Bridge

21

Bridge Problems – 2016

Bridge Problems – 2016

Photo 58.7-3: West railing at Abutment 6 misaligned transversely 1 inch to the west

Photo 58.7-4: East railing at Abutment 6 misaligned transversely 1½ inch to the west

Bridge Problems – July 2016

Bridge Problems – Facts & Rumors

- Value Engineering
 - Apparent Minimum Design Tolerances
- Construction Issues
- No As-Built Plans
 - Including Pile Driving Records

Proceed to Find a Solution

RFP for Design Services

- RFP -> October 2016
- NTP -> March 2017
- AECOM / Geotechnology

Scope of Work

- Review of Project Documents
- Surveying / Monitoring
- Bridge Inspection
- Geotechnical Investigation
- Structural Analysis
- Evaluation of Rehabilitation Alternatives
- Report Preparation
- Final Design

Project Scope

2017 Fieldwork

- 14 geotechnical borings
 - 3 offset holes at Hole 1003, 1010, and 1011
- 4 slope inclinometers installed at Holes 1004, 1006, 1009, and 1011A
- Modified Sondex installations in Holes 1004 and 1011A for settlement monitoring

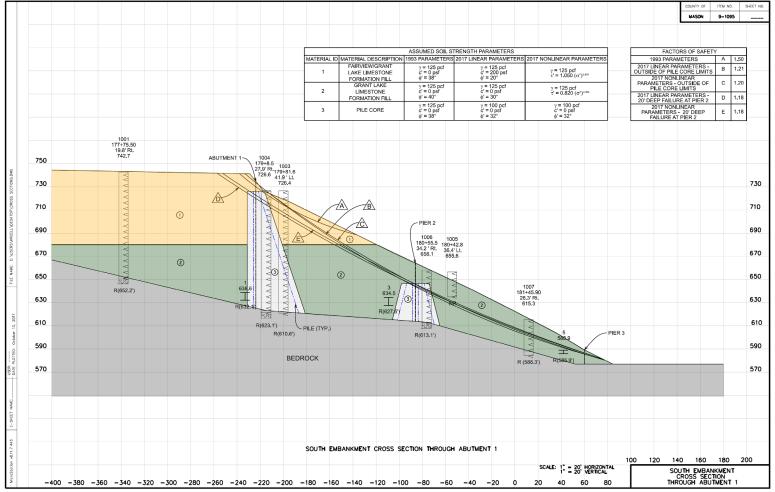
Analysis

- Embankment Analysis
- Slope Stability Analysis
- Settlement Analysis
- Batter Pile Analysis
- Pile Downdrag Analysis

Instrumentation

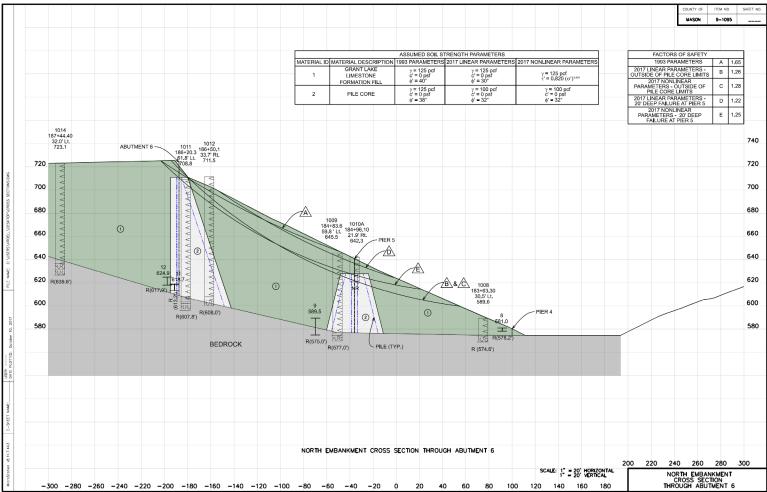
Subsurface Conditions

Bedrock Formations


- Kope Formation: 80% Shale & 20% Limestone
- Fairview Formation: 60% Limestone & 40% Shale
- Grant Lake Limestone: 65-85% Limestone & 15-35% Shale Shot-rock Fill
- Comprised of Grant Lake Limestone & Fairview Formation
 Pile Core Material
- No. 57 stone

Driven Piles

• Bear in Kope Formation



GEOTECHNOLOGY

Abutment 6 – North Embankment

TRANSPORTATION CABINET

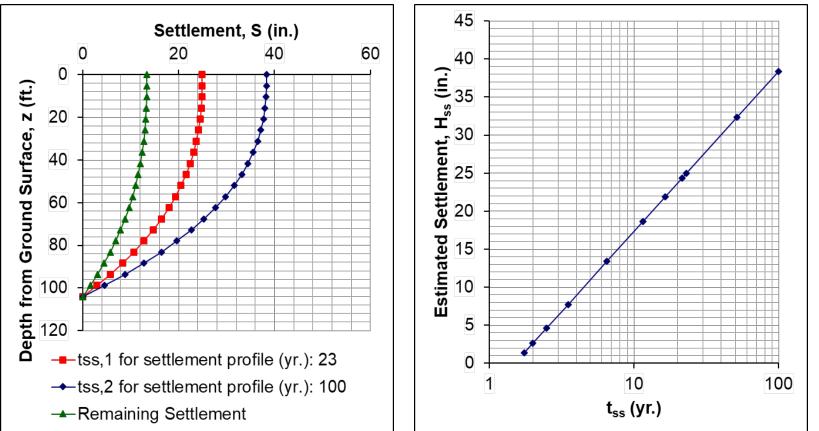
Slope Stability

Scenario	Factor of Safety				
South Embankment (Abutment 1)					
2017 linear parameters – outside of pile core limits	1.21				
2017 nonlinear parameters – outside of pile core limits	1.20				
2017 linear parameters – 20-foot-deep failure at Pier 2	1.18				
2017 nonlinear parameters – 20-foot-deep failure at Pier 2					
North Embankment (Abutment 6)					
2017 linear parameters – outside of pile core limits, 20-foot-deep failure	1.26				
2017 nonlinear parameters – outside of pile core limits, 20-foot-deep failure	1.28				
2017 linear parameters – 20-foot-deep failure at Pier 5	1.22				
2017 nonlinear parameters – 20-foot-deep failure at Pier 5	1.25				

Settlement

		Observed Settlement (in.)		Shale Settlement from Hopkins and Beckham, <u>H_{ss} (in.)</u>	
Location	Embankment	Ground Surfaceª	Beneath Pile Cap ^b	At Ground	At Top of Pile
Location	Height, H (ft.)	Surraces	File Cape	Surface	File
South	115	30 ^c	N/A	32.1	N/A
Approach					
Abutment 1	103	20-25	16-28	24.4	24.4
Pier 2	56	N/A	2-4 ^d	5.3	4.6
Pier 5	70	N/A	2-8 ^d	9.3	8.8
Abutment 6	104	26-29	13-30	24.9	24.9
North Approach	115	27 ^c	N/A	32.1	N/A

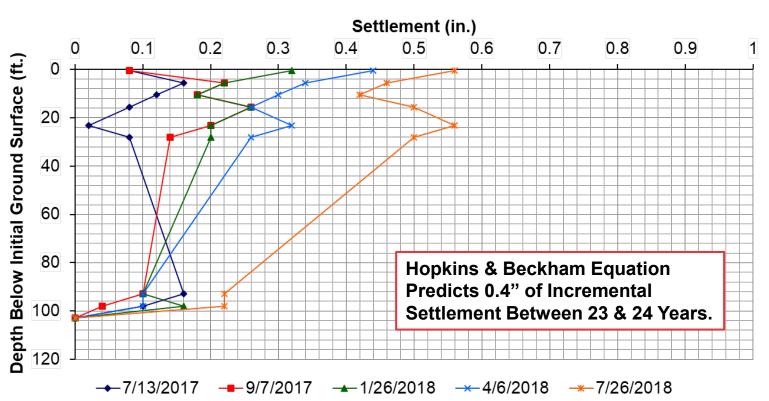
^a Ground surface settlements were interpreted from the concrete paint coatings on the abutments and the pavement cores in the approach slabs.


^b Measured from the test pits.

° Settlement at the approach slabs assumes the original approach slab thickness was 12 inches.

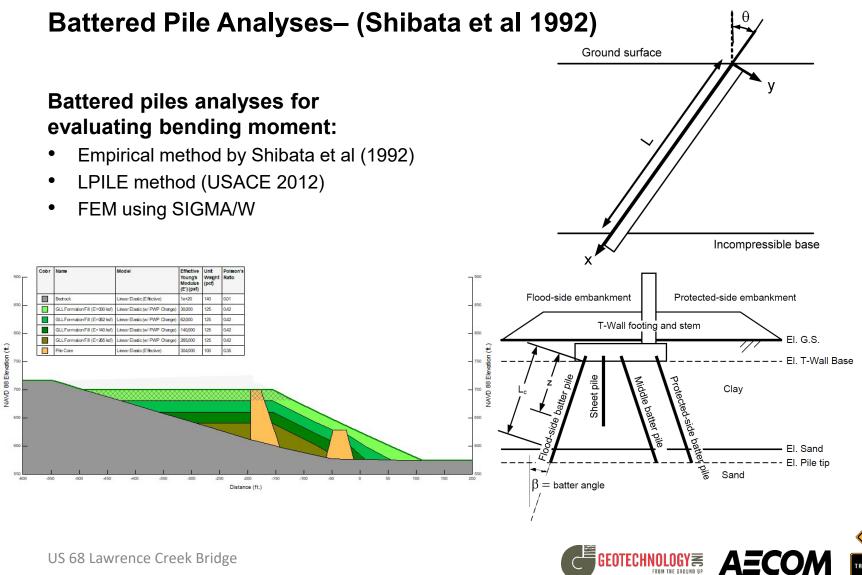
^d Beneath the pile caps at Piers 2 and 5, the settlements were greater around the perimeter in the area of the batter piles and lesser in the interior areas between piles.

Settlement Profile – Abutment 6 (Hopkins & Beckham 1998)


GEOTECHNOLOGY

Δ

Boring 1011A Sondex Instrumentation at Abutment 6



GEOTECHNOLOGY

Geotechnical Investigation

Geotechnical Investigation

Summary of Findings

Deformation of shot-rock fill resulted from:

- Softening of shale
- Rearrangement of particles from groundwater infiltration
- Collapsing of nested limestone or shale that bridged voids

Lateral movements and structural distress of bridge abutments resulted from:

- Bending of batter piles, which "pulled" creek side of pile caps down and towards the creek
- Time-dependent horizontal deformations within the fill, related to primary compression of the shot-rock fill, which "pushed" the piles towards the creek

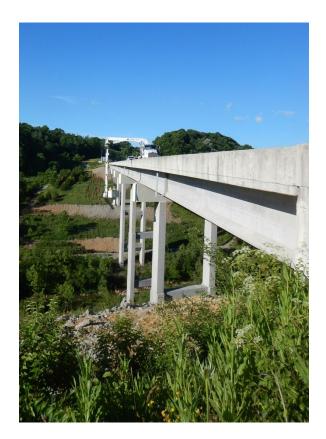
Slope Stability:

- Signs of global stability were not visible
- Factor of safety for long-term conditions = 1.2 for north and south embankments
- Typical target values for the factor of safety are between 1.6 and 1.8

Geotechnical Investigation

Summary of Findings

Settlements


- Observed settlements are in reasonable agreement with settlements computed by Hopkins and Beckham equation
- Effects of embankment deformation on existing pile foundations per empirical and finite element (FE) analysis methods:
 - Abutments 1 & 6 and Piers 2 & 5:
 - Additional deep foundations should be provided to improve the factor of safety and provide additional resistance for potential continued settlement of the fill embankment

Scope of Work

- Review of Project Documents
- Surveying / Monitoring
- Bridge Inspection
- Geotechnical Investigation
- Structural Analysis
- Evaluation of Rehabilitation Alternatives
- Report Preparation
- Final Design

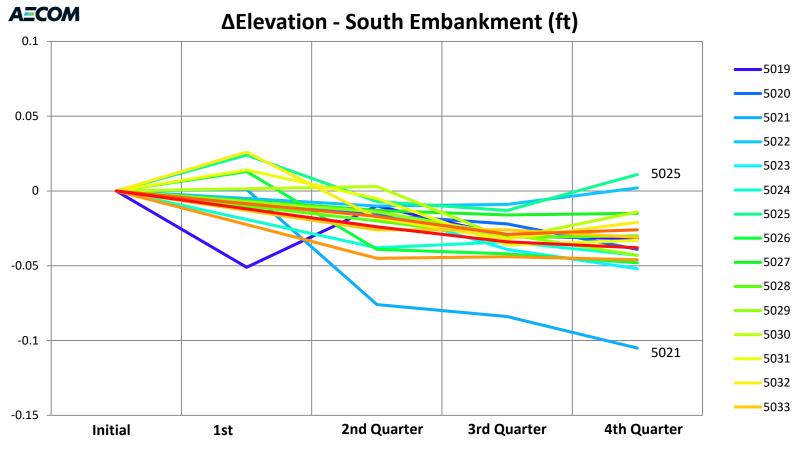
Survey & Monitoring

BTM Engineering

Baseline

- Ground Topography
- Embankment Monitoring Locations
- Structure Monitoring Locations
- Roadway Elevations
- LiDAR Scan

Quarterly Comparisons



Embankment monitoring

Embankment monitoring

GEOTECHNOLOGY

AE

44

LiDAR scan

US 68 Lawrence Creek Bridge

Conclusions and Recommendations

Summary

- Slope Stability
- Structural Observations
- Embankment Settlement
- Pile Distress

Recommendations

- Reconstruct Abutments 1 & 6
- Strengthen Piers 2 & 5
- Increased Inspection & Monitoring Cycle

Project Team Goals

- Address evaluation recommendations
- Correct deterioration in abutment caps, end diaphragms, and piles
- Account for future settlement in deep foundation design
- Provide ongoing traffic service during construction

Remediation Alternatives

No Build

- Inexpensive
- Does not address problem

Long Term Monitoring

- Inexpensive
- Can alert KYTC of problems
- Does not address damaged structural concerns.

Complete Reconstruction

- Expensive
- No benefit in addressing geotechnical challenges
- Rehabilitation & Strengthening
 - Bridge can maintain in-service
 - Constructability challenges

Abutment Rehabilitation & Strengthening Alternatives

Abutment Strengthening

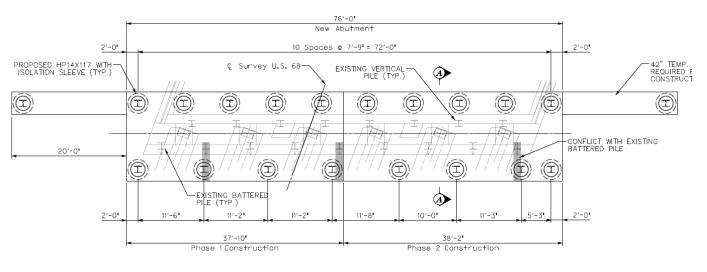
- Center of Cap
- Widening the Cap

Abutment Reconstruction

- In-situ
- Behind Existing Abutment
- In-front Existing Abutment

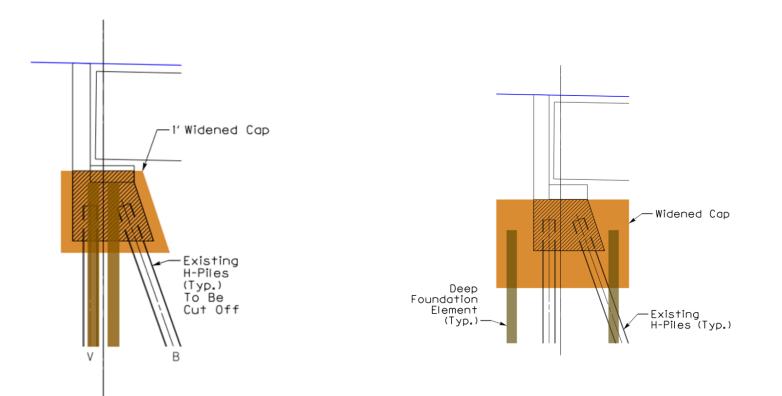
Deep Foundation Support

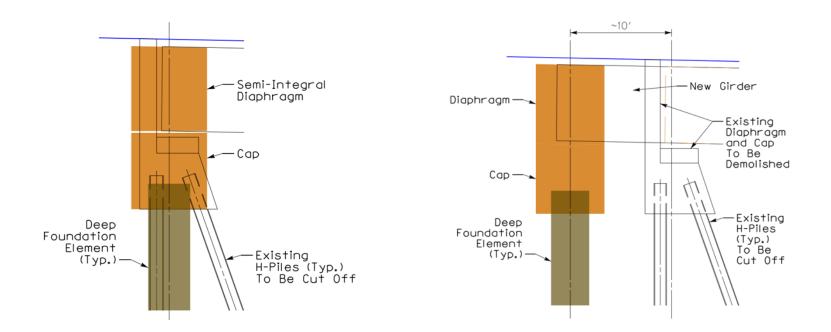
- Battered H-piles
- H-piles
- Drilled Shafts
- Micropiles



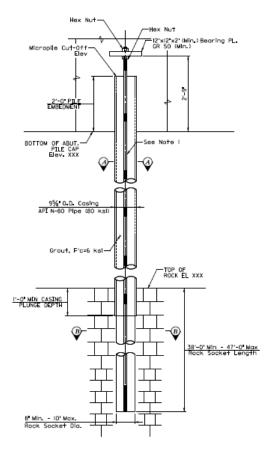
Abutment Strengthening Challenges

- Battered Piles
- Skewed Abutments
- Wide Top Girder Flanges



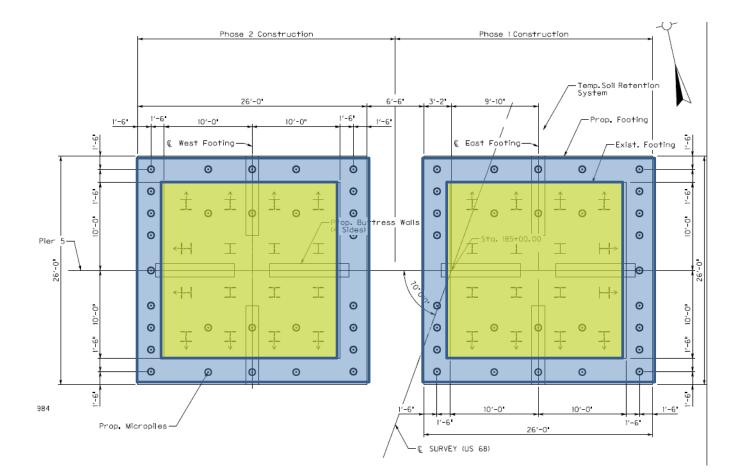

Abutment Strengthening

US 68 Lawrence Creek Bridge


Abutment Reconstruction

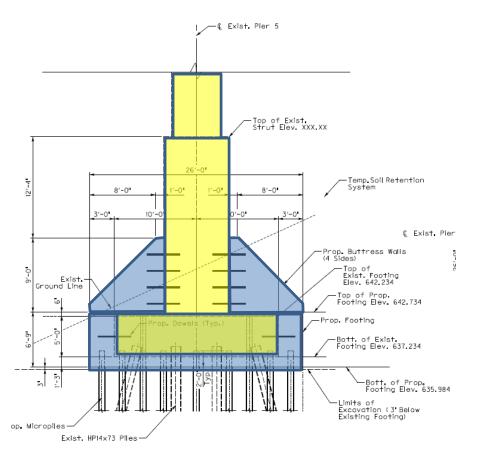
Abutment Deep Foundation Alternatives

- Battered H-piles
 - Continued downdrag problems
- Vertical H-piles
 - Requires downdrag isolation casings
 - Large diameter similar to shaft option
- Drilled Shafts
 - Large diameter attracts significant downdrag loads
 - Requires deep rock socket
- Micropiles
 - Small diameter can be installed in between existing piles and girders


Pier Strengthening

- Piers 2 & 5
 - Downdrag
- Raft Footings
 - 10 battered piles
 - 6 vertical piles
- Strengthening
 - Design to support 100% load

Pier Strengthening



GEOTECHNOLOGY AECO

56

Pier Strengthening

Construction

- Schedule
 - October 25, 2019 Letting
 - Completion in 2021

Questions?